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ABSTRACT: Thirty fourth-grade students participated in an extended intervention previ-
ously successful in fostering skills of scientific investigation and inference, notably control
of variables (COV). The intervention was similarly successful for a majority of students
in the present study, enabling them to isolate the three causal and two noncausal variables
operating in a multivariable system. However, when asked to predict outcomes of various
constellations of variable levels, they tended not to take into account the effects of all of the
causal variables they had identified. Moreover, they did not adhere to a consistency prin-
ciple, i.e., that a factor that produces an effect can be expected to produce the same effect
in the future, given similar conditions. These findings suggest that COV is not the only
challenge students experience in reasoning about multiple variables. Elementary-school
students’ mental models of multivariable causality appear to deviate from a normative,
scientific model, even after they have mastered that aspect of scientific method having to
do with the design of controlled experiments to isolate effects of individual variables. The
challenges, beyond COV, that appear to be involved in making prediction judgments in-
volving multiple variables warrant attention in the design of curricula to foster development
of scientific thinking skills. C© 2007 Wiley Periodicals, Inc. Sci Ed 91:710 – 726, 2007

INTRODUCTION

What skills do students need to have developed to be regarded as competent with respect
to scientific method? This question is of theoretical significance in the study of cognitive
development but also of enormous practical significance to science educators. Mastery of
scientific method now appears as a goal in virtually all U.S. state and national curriculum
standards (National Research Council, 1996) and commonly in the science curricula of
other countries as well (Abd-El-Khalick et al., 2004), despite a lack of consensus as to
exactly what it entails (Abd-El-Khalick et al., 2004; Duschl & Grandy, 2005; Kuhn, 2005).
Developmental psychologists show a similar lack of consensus regarding the age at which
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children show competence in scientific method, with some researchers emphasizing early
competence (Gopnik, Sobel, Schulz, & Glymour, 2001; Ruffman, Perner, Olson, & Doherty,
1993; Schulz & Gopnik, 2004; Sodian, Zaitchik, & Carey, 1991), and others later lack of
competence (Klaczynski, 2004; Klahr, 2000; Klahr, Fay, & Dunbar, 1993; Koslowski,
1996; Kuhn, 1989, 2002; Kuhn, Amsel, & O’Loughlin, 1988; Kuhn, Garcia-Mila, Zohar,
& Andersen, 1995; Kuhn, Katz, & Dean, 2004; Schauble, 1990, 1996).

Progress in resolving such controversies necessitates achieving a clear understanding
of exactly what aspects of scientific method students need to acquire competence in, a
prerequisite to addressing the equally fraught question of how educators can best realize
such goals (Dean & Kuhn, 2007; Klahr & Nigam, 2004). Research in developmental
psychology on the process of scientific reasoning (as opposed to scientific concepts or
understanding) has been devoted almost entirely to development of the control of variables
(COV) strategy (i.e., holding constant all other variables than the one under investigation,
to eliminate their influence on outcome). (For review see Klahr, 2000; Kuhn, 2002; Kuhn
& Franklin, 2006; Zimmerman, 2000, in press.)

Here and elsewhere, I raise the question of whether COV is all that is critical for students
to learn about scientific method. Argumentation, explanation and model building, as well
as experimentation figure importantly in scientific method (Kuhn, 1993, 2002; Lehrer &
Schauble, 2006). Even within the domain of experimentation, a recent study by Kuhn and
Dean (2005) suggests that this focus may be overly narrow. In an intervention otherwise
confined to exercise of investigation and inference strategies (in the absence of direct in-
struction) in a multivariable context, we introduced the simple suggestion to middle-school
students that they identify a single variable to find out about. This minimal intervention
had a pronounced effect on students’ experimentation strategies, greatly enhancing the fre-
quency of controlled comparison and valid inference, relative to a control group, in both the
original and a new context. This initial phase of identifying a question plays such a powerful
role in the subsequent conduct of investigation and inference, we suggested, because it gives
meaning and direction to what follows. In the multivariable context of isolation and control
of variables, the student may cease to vary other variables across two-instance comparisons
because of a gradually increasing sense that they are not relevant to the question at hand.

The work reported here raises further question as to whether the implementation of COV
to design and evaluate experiments is all that is important to teach students about scientific
method. To anticipate my conclusion, I claim that scientific reasoning about multivariable
phenomena poses significant challenges above and beyond COV and that these challenges
warrant attention in their own right.

To begin, it is useful to situate COV in its broader framework of causal inference. Sci-
entific reasoning and multivariable causal inference are in fact closely connected (Kuhn &
Dean, 2004), although they have been examined in almost entirely separate literatures.
An analysis of variance (ANOVA) framework is applicable to both.1 Among the assump-
tions that are part of this framework is first the assumption that causes have consistent
effects under the same conditions, and second that multiple effects may operate jointly
on an outcome, in either additive or interactive fashion. In both scientific reasoning and
multivariable causal inference, a number of potential causal variables may or may not be
associated with an outcome. In empirical research on individuals’ use of these kinds of rea-
soning, the key difference between them is that in studies of scientific reasoning, individuals
typically choose instances to investigate as a basis for subsequent inferences, whereas in

1 The analysis-of-variance framework is not invoked here in the sense of a claim that it describes students’
reasoning, but only in the more limited sense that it provides a model incorporating criteria for systematic
integration of multiple simultaneous effects on an outcome.
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studies of multivariable causal inference (Cheng, 1997, Downing, Sternberg, & Ross, 1985;
Glymour, 2001; Hilton & Slugoski, 1986; Schustack & Sternberg, 1981; Sloman &
Lagnado, 2005; Spellman, 1996; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003;
Waldmann & Hagmayer, 2005; Waldmann & Martignon, 1998), individuals typically draw
inferences on the basis of instances presented to them. In both cases, however, the ANOVA
assumptions apply—multiple effects may be in operation and effects are repeatable (con-
sistent).

In the scientific reasoning context, the individual’s task is to identify those effects that
are in operation, i.e., those variables that affect a designated outcome variable, a task that
requires use of COV. The bulk of studies of scientific reasoning have limited their focus to
execution of the COV skill. They examine whether an individual can correctly identify each
of the operative variables and exclude the inoperative ones. They have not asked whether,
having done so, the individual is then able to reason appropriately about the simultaneous
effects of multiple operative variables (the task required in multivariable causal inference
tasks), once each of these effects has been identified.

The most straightforward way of assessing this ability is to ask the individual to predict
and justify the outcomes for new multivariable combinations not previously examined.
Kuhn and Dean (2004) found that preadolescents, as well as some adults, perform poorly
on such a multivariable prediction (MVP) task. In addition to typically faulty predictions,
individuals often make inconsistent causal attributions across consecutive predictions, for
example implicating variable A as causal (when asked, following a prediction, to indicate
which variables influenced their prediction) for one prediction and variable B as causal
for the next prediction. Furthermore, they often fail to implicate as many variables as
influencing their predictions as they had earlier identified as causal when asked to make
explicit judgments of the causal roles of each variable (in a multivariable context in which
the participant is asked to identify causal and noncausal effects and must use a COV
method to do so successfully). For almost half the sample, the median number of variables
implicated as influencing an outcome prediction (and hence at least implicitly judged causal)
in the context of the MVP task was one (of a possible five). Both of these patterns clearly
violate the assumptions of consistency and additivity of effects. Kuhn and Dean (2004)
thus characterized these patterns as reflecting an immature mental model of multivariable
causality.

One conceivable explanation for this poor performance is that the individuals performing
poorly have not mastered a core element of scientific method, namely COV. Perhaps, once
they understand how to analyze multivariable constellations into component individual ef-
fects, they should have no trouble taking into consideration and aggregating these individual
effects so as to perform the MVP task.

One method for testing this hypothesis is correlational, i.e., examine individuals who have
or have not achieved mastery of scientific method (defined for these purposes as COV) and
assess their ability to make correct MVP judgments. We chose instead to test the hypothesis
using a stronger, experimental, rather than correlational, method, one in which we induce
the scientific method skill (COV) and assess any resulting effects on performance on the
MVP task. (The method is termed experimental not in the sense of random assignment but
rather in the more rudimentary sense of undertaking to induce, rather than merely observe,
a skill in order to assess its implications or effects.)

If immature mental models of multivariable causality are an epiphenomenon of immature
scientific method skill, the previously noted weaknesses (inconsistency and nonadditivity)
in the former, as manifested in the MVP task, should disappear.

The experimental design also allows testing of a second hypothesis: that weaknesses
in mental models of multivariable causality (as manifested in the MVP task) observed
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in initial assessments are attributable to uncertainty regarding the causal structure of the
domain and the nature of the different possible effects, and inconsistency is therefore a
result of vacillation as different ideas are explored. Students investigate the domain over
multiple sessions and become familiar with the variables and their effects, following which
their MVP skills are assessed. At this assessment, lack of familiarity with the effects of the
individual variables can therefore be eliminated as an explanation.

METHOD

Participants

Participants were 30 fourth-grade children in an independent school affiliated with a
university in a large urban setting. The school was attended by a mix of children of fami-
lies affiliated with the university and families from the surrounding community. Students
were equally divided by gender and were of heterogeneous ethnic and socioeconomic
backgrounds.

Design

Participants were of an age level (fourth grade) at which previous work had shown
the feasibility of inducing scientific method skills, in particular COV, during a period
of repeated engagement with a problem environment requiring these skills (Kuhn et al.,
1995; Kuhn, Black, Keselman, & Kaplan, 2000; Kuhn, Schauble, & Garcı́a-Mila, 1992).
Participants were in the initial months of a 3-year instructional program designed to develop
inquiry skills. As a means of promoting COV, students worked in pairs in repeated sessions
over a period of 3 months on a problem requiring them to identify which of five potential
dichotomous variables were causal and which were noncausal in influencing an outcome.
Later in the period, a second task was introduced (MVP) that required predicting outcomes
for novel variable constellations and justifying these predictions. On the basis of the latter
task, students’ conceptions of causal consistency and causal additivity (of multiple factors),
i.e., their mental models of multivariable causality, were assessed. The major question to
be addressed is whether students who are successful in the first activity will show success
in the second, i.e., will have achieved scientifically correct mental models of multivariable
causality.

Procedure

Investigation/Inference (COV). Students worked with software designed for the purpose
of developing skills in scientific investigation and inference, in particular controlled com-
parison (COV). The software depicts multivariable causal systems resembling those used
in earlier research (Kuhn et al., 1992, 1995, 2000; Schauble, 1990, 1996). The students’
task is to choose cases for examination that represent different combinations of variables
and draw appropriate inferences regarding which variables do and do not make a difference
to the outcome.

In the Earthquake Forecaster version, students play the role of junior earthquake fore-
caster and are introduced to a set of five dichotomous variables that may or may not affect
earthquake risk. They are able to choose cases to investigate (consisting of combinations
of variable levels of each variable) and observe resulting risk levels. In the Ocean Voyage
program, similarly students investigated which of a set of five dichotomous variables influ-
ence the progress of ancient ships across the ocean. In each case, of five potential causal
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TABLE 1
Causal Structure Represented in Earthquake Forecaster

Feature Effect Outcome

Soil type (igneous and sedimentary) Noncausal Both yield identical outcomes
S-wave rate (fast and slow) Noncausal Both yield identical outcomes
Water quality (good and poor) Causal Good yields one level of greater risk
Snake activity (high and low) Causal High yields one level of greater risk
Gas level (heavy and light) Causal Heavy yields one level of greater risk

Outcome levels: Extreme, high, medium, or low earthquake risk.

variables, three in fact have equal additive causal effects on outcome and two have no effect.
The causal structure and variables represented in Earthquake Forecaster appear in Table 1.

Pretest. All students participated in an individual pretest assessment session with Earth-
quake Forecaster. This session took place in a room adjacent to the classroom and was
conducted individually by a young adult who was a member of the research team and
not part of the school staff. This adult provided any guidance the student needed with the
program. One cycle of this module allows the student to select a sequence of four cases for
examination, observe outcomes, and, following each, to draw inferences about the causal,
noncausal, or indeterminate status of each of the five variables, to provide justifications
for inferences, and to record any information desired in an electronic notebook, which
remained available for their consultation.

After an initial introduction, students are asked to choose what they will find out about in
their first case selection (see Figure 1). Students identify whether they are or are not finding

Figure 1. Find out screen. [Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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Figure 2. Case request screen. [Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

out about a feature by clicking the feature picture(s) corresponding to their choice(s). Then,
students construct a case of their own choosing, by selecting the level (Table 1) of each
feature (see Figure 2). These choices yield an outcome displayed in the form of a gauge
representing the earthquake risk level. Students are then asked to make any inferences
they believe to be justified regarding the causal or noncausal status of any of the features
(Figure 3). The final screen for each case prompts the student to enter any notes they wish
to (Figure 4).

Each of the screens presented here is depicted as they would appear during a second case
investigation. The first-case screen includes no reference to a previous case; subsequent
screens include not only the outcome for the current case but also show results for the
immediately preceding case. After answering questions regarding the outcome of the fourth
case and allowing the student to make any additional notes on the final notebook screen,
the program thanks the student for participating and shuts down.

Investigation/Inference Exercise. Approximately 1 month after the pretest session, fol-
lowing a midyear vacation, students began work with the parallel Ocean Voyage program.
This program is identical in all respects to Earthquake Forecaster except for content, which
involves the variables that affect the success of an ancient ocean voyage across the sea.
The five variables were captain’s age (young or old), crew size (large or small), navigation
(compass or stars), sail type (latteen or square), and ship hull shape (round or V).

Work on Ocean Voyage was integrated into students’ regular classroom work. Sessions
lasted from 30 to 45 minutes and took place once or occasionally twice per week, depending
on the class schedule, over a period of 9 weeks, interrupted by a 2-week school vacation
midway through. The activity was introduced to students by the classroom teacher as
a unit on inquiry, defined as “how to find out things.” The Ocean Voyage content was
designed to complement students’ work on a unit on the seas, which had been designed by
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Figure 3. Results and conclusions screen. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 4. Notebook screen. [Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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their classroom teachers and took place contemporaneously but did not include any of the
specific content of Ocean Voyage. Except for occasional brief departures for some purpose,
the classroom teacher generally remained in the classroom and supervised the activity, with
the assistance of one or two members of the research team. The teacher also took charge of
procedures the class had developed for assigning partners.

Because of student absences and other scheduling issues, the number of times a student
worked on the Ocean Voyage program varied somewhat, with a range from 5 to 9 and a mean
of 7.25. Students worked in pairs, and only occasionally alone (when an uneven number
of students was present) to encourage them to externalize their thinking and deliberate
regarding their judgments, a method we had found productive in previous work. They
worked with a new partner at each session.

Prediction/Attribution (MVP). After students had worked with the Ocean Voyage program
for 1 month, the prediction/attribution module of Ocean Voyage was introduced as a separate
“assess your skill” module. It requires the student to predict an outcome based on a
combination of levels of the five dichotomous variables and to indicate which variables
influence the prediction. This task served as the basis for inferring a student’s model of
multivariable causality. Students worked individually on this module over repeated sessions
for a period of approximately 1 month, coincident with the final month of their work on
the investigation module. The number of sessions varied, with a range from 2 to 6 and
a mean of 4.5. Sessions lasted about 5 minutes and occurred at the conclusion of the
investigation/inference session. Students had access to their electronic notebooks if they
wished to consult them.

Figure 5. Prediction (MVP) screen (Ocean Voyage program). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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At each session, a series of three instances were presented consecutively on the screen,
each consisting of a particular constellation of variable levels, without any outcome
depicted. (See Figure 5.) The student was asked to predict the outcome for that case
(of four levels ranging from least to greatest) and then in the list of variables that followed,
indicate those that affected the prediction. (“Why is this the outcome? Which feature or
features made a difference in your prediction?”) Each of the variables was listed and the
instruction indicated “Choose one or more.” No feedback was provided with respect to
correctness. At subsequent sessions, students were given the general feedback that their
previous predictions had not been entirely correct and that they should keep working on
their prediction skills.

Investigation/Inference (COV) Posttest. To ascertain that students’ progress in investi-
gation/inference skills is not limited to the particular content in which the skills developed,
it is necessary to establish that the skills generalize to new content. For this purpose, the
Earthquake Forecaster pretest was readministered individually to all students, during the
week following completion of work on the investigation/inference and prediction modules.

RESULTS

Despite their relatively young age, a majority of participants, though not all, made
substantial progress in the development of investigation and inference skills, as the result
simply of exercise in an environment that required them and despite the absence of specific
instruction—a result consistent with previous research (Kuhn et al., 1992). In contrast,
progress was minimal with respect to exhibition of mental models of multivariable causality
having the fundamental analysis-of-variance characteristics of consistency and additivity.

Pretest

No student showed competence in controlled comparison and identification of causal
and noncausal factors in the pretest assessment on the Earthquake Forecaster program.
Specifically, no student chose two consecutive cases that represented a controlled compar-
ison (i.e., were composed of the same variable level for all variables except one) and drew
an appropriate conclusion regarding the effect of the varied variable. The typical strate-
gies, consistent with earlier research on scientific investigation (Kuhn, 2002; Zimmerman,
2000, in press), were to set out to investigate the effects of multiple factors at once, to
compare cases that varied on multiple dimensions, and to draw invalid inferences justified
by reference to compatible pieces of evidence in conjunction with theoretical expectation
or justified entirely by theoretical belief. Thus, for example, in Earthquake Forecaster a
student might in observing an initial instance attribute the high-earthquake risk entirely to
the high-snake activity associated with this instance and justify her inference entirely on
the basis of her prior belief that a high level of this variable is associated with earthquake
risk. The next instance she chooses to observe is characterized by low-snake activity and
low-earthquake risk, and this time she justifies her causal inference regarding snake activity
based on the covariation of this variable with outcome over the two instances. She ignores,
however, two other variables she has also chosen to vary over the two instances and that
also covary with outcome.
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Investigation/Inference Exercise

Also consistent with earlier research (Kuhn et al., 1992, 1995, 2000), after several sessions
of practice with the Ocean Voyage program, the investigatory and inference strategies of
the majority of students began slowly to improve. As microgenetic analyses of the nature
of such improvement have been presented elsewhere (Kuhn et al., 1995) and are not central
to the purpose of the present research, they are not presented here. Instead, participants
are categorized into two broad groups that fit the purposes of the present study, those who
made substantial progress in the development of scientific reasoning skill and those who
did not.

Posttest Classification

Posttest performance on Earthquake Forecaster was used as the criterion for classification
of a participant in the successful category. However, all students classified as successful
on the Earthquake Forecaster posttest did begin to show success on the Ocean Voyage
program at least by the later sessions and all had correctly identified the three causal and
two noncausal Ocean Voyage variables by the final session.2

Students classified as successful at a minimum demonstrated two sequences of consec-
utive cases in their posttest performance on Earthquake Forecaster that met these criteria:

1. Indication of an intent to find out about the effect of a single variable (see Figure 1).
2. Selection of two instances that varied with respect only to the variable indicated in

#1 (see Figure 2).
3. An appropriate inference of causality or noncausality for the variable indicated in #1

based on the results of the comparison constructed in #2 (see Figure 3).

(A criterion of consistent, i.e., uniform, display of these characteristics across the entire
session was not imposed since a mixture of usage of advanced and less advanced skills has
been found the norm; Kuhn et al., 1995; Siegler, 2006.)

Using these criteria, 19 of the 30 participants were categorized as successful and 11
were not, a proportion in accord with what would be expected at this age level following
dense engagement with a problem environment requiring scientific reasoning skills (Kuhn,
2002).

Prediction/Attribution (MVP)

Our interest centers on the 19 participants classified as successful. Does their mastery
of scientific reasoning skill beyond what would be expected for their age level, as well as
their familiarity with the Ocean Voyage content, show evidence of improving their mental
models of multivariable causality to a more scientifically adequate level than that observed
among preadolescents and many adults in previous research (Kuhn & Dean, 2004)? To

2 Considerable evidence is now available that children of this age do not conceptualize interaction effects
among variables (Kuhn, 2002; Kuhn et al., 1995; Zimmerman, 2000). A concern about the possibility of
such effects was never voiced during students’ Ocean Voyage investigations, and it is hence unlikely that
a concern about interactions among variables had a detrimental effect on their predictions. In any case,
it would not account for inconsistency from one prediction to the next in the variables implicated as
influencing the prediction.
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TABLE 2
Individual Averages (Over Three Final MVP Sessions) of Inconsistency of
Causal Attributions Within a Session

Causal Variablesa Noncausal Variablesb All Variablesc

TD 0.00 0.00 0.00
OD 0.33 0.00 0.33
TM 0.33 0.00 0.33

MB 0.33 0.33 0.66
OG 0.66 0.66 1.33
FB 1.33 0.00 1.33
PG 1.33 0.00 1.33

SF 2.00 0.00 2.00
KN 1.33 1.00 2.33
MM 1.66 0.66 2.33
SS 1.66 0.66 2.33
LD 1.66 1.00 2.66
CN 1.66 1.00 2.66
DM 2.00 0.66 2.66
MF 2.66 0.00 2.66

DT 1.66 1.33 3.00
MR 2.00 1.33 3.33
CG 2.00 1.66 3.66
TA 2.33 1.33 3.66

aMean number of variables (of 3) for which inconsistency appears.
bMean number of variables (of 2) for which inconsistency appears.
cMean number of variables (of 5) for which inconsistency appears.

answer this question, we assessed these models over several occasions, rather than just
once, for reliability and to eliminate unfamiliarity with the MVP task as a possible source
of difficulty.

At each prediction/attribution (MVP) session,the student was asked to make predic-
tive judgments about three cases. For each case, from zero to five variables could be
implicated as having played a role in the outcome. Our primary interest is in the de-
gree of consistency of these causal attributions within a session over the three cases.
Inconsistency for a particular variable is defined as not consistently implicating the vari-
able as either causal or noncausal (i.e., implicating the variable as causal with respect
to one or two of the three instances that make up a session of the MVP task and non-
causal with respect to the others). From one session to the next, it is plausible that
conclusions regarding causal status of a variable would change, especially as students
were working on the investigation module during the same period, but one would not
expect these conclusions to change within a session, especially in the absence of any
feedback.

Table 2 presents for each of the 19 students who had been classified in the successful
category the mean number of variables for which inconsistency appears during the student’s
three final sessions of the MVP task. At each session, inconsistency can be shown for any
number from 0 to 5 of the five variables presented in the task. We average over the last
three sessions, given the variability across sessions that is the norm in microgenetic studies
(Kuhn et al., 1995; Siegler, 2006). Students are identified by initials and listed individually
in Table 2 in an order reflecting overall performance, with the better performing (lower
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inconsistency scores) appearing first. Only the 19 students previously classified in the
successful category are included.3

Results are displayed by individual since it is individual patterns that are of concern,
not group averages that could mask inconsistency, as well as separately for causal and
noncausal variables, i.e., the three that in fact had causal effects on outcomes vs. the two
that did not. Students, especially the 19 ultimately successful ones considered here, would
have had ample opportunity by this point to have identified the variables that had causal
effects on outcomes and those that had no effects, and we confirmed from the individual
records of each participant that all 19 had indeed done so.

As seen from comparison of the first two columns in Table 2, and consistent with
previous research (Kuhn et al., 1995), causal variables pose more of a challenge to sound
reasoning than do noncausal variables. For causal variables, the mean of the individual
means (of number of variables for which inconsistency is shown) is 1.42 (of a possible
3). For noncausal variables, the mean of individual means is 0.61 (of a possible 2). Thus,
inconsistency tends to be more frequent when the variable is causal (almost half of the time,
versus less than a third). Nonetheless, inconsistency in causal attribution, we see, remains
a significant limitation with respect to both causal and noncausal variables for a majority
of these students, despite the progress they have made in scientific reasoning.3

Only the first two (TD and OD) of the 19 students in Table 2 showed clear progress
in the consistency of their causal attribution during the course of their engagement with
the activity. TD showed a sharp transition between the second and third sessions, with
initial inconsistency (mean for first two sessions) of 2.00 for causal variables and 1.00 for
noncausal variables (hence 3.00 for both). At the next session, inconsistency dropped to
zero for both causal and noncausal variables and remained there (see Table 2). OD showed
a more gradual transition from an initial inconsistency (mean for first three sessions)
of 1.33 for causal variables and 0.33 for noncausal variables, dropping to 0.33 and 0.00,
respectively, by the final sessions, as shown in Table 2. All other students showed negligible
improvement in consistency over sessions.

The other major question we wish to ask is the extent to which students’ responses in
the MVP task appropriately incorporate the roles of all three causal variables. In contrast
to Table 2, we look here at their performance only at the final MVP session, when their
knowledge and skill should have been at its maximum. Again, despite the fact that the 19
participants considered here had by this point all successfully identified the three variables
that had causal effects on outcomes and the two that did not, underattribution of causality
remains a significant constraint on their causal reasoning. Among these 19, only seven
consistently implicate all three causal variables as having contributed to the outcome. Of
the remaining 12, four implicate a median of 2 as causal (over the three prediction judgments
that constitute the session), and the remaining eight implicate a median of 1 as causal.

When the two characteristics, inconsistency and underattribution, are combined, rather
than the normative scientific model of multivariable causality, what emerges as characteristic
is a model in which the explanatory burden in a multivariable context shifts from one single
variable to another single variable over time. A student we have called Dora provides
a typical example. She was successful in the investigation/inference task, identifying the
three causal and two noncausal variables in Ocean Voyage, as well as meeting the stipulated
criteria in the Earthquake Forecaster posttest. Her fourth attempt at the MVP task, however,

3 Comparable levels of performance were observed on the part of the 11 participants who did not meet
the criteria indicated and were not classified in the successful category. Mean inconsistency scores were
1.75 for causal variables and 0.85 for noncausal variables. Hence, students in the successful category did not
show significantly greater mastery in the MVP task, as a result of their achievement in scientific reasoning,
than did students who did not show this scientific reasoning achievement.
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after she was well experienced with it, proceeded as follows. Her first prediction was
incorrect (by one level, of the four possible prediction outcomes). In response to the
accompanying query (“Why is this the outcome?,” followed by the opportunity to select
any number of the five variables listed), she selected only causal variable 1 (CV1). A new,
second variable constellation appeared and Dora was prompted to predict an outcome. Her
second prediction was incorrect (by two levels), and she selected only noncausal variable
1 (NCV1) as having played a role in her prediction. Dora’s third prediction was correct;
however, she still implicated only a single variable (this time CV2) as having played a role
in her prediction.

Dora’s next set of predictions was similar. The first was in fact correct, but she implicated
only CV3 in her prediction. Her second prediction was incorrect (by one level) and this
time she returned to CV1 as having influenced her prediction. Her third prediction was
incorrect (by two levels) and this time she again implicated CV2 as the only influence.
Dora’s only consistent implicit causal attribution over this set of predictions was NCV2,
which she never implicated as causal. Moreover, never did she implicate more than one
variable as having influenced her prediction, despite the fact that the instructions stated
clearly (and were verbally reinforced by the interviewer) that she could choose as many of
the five as she wished.

Again, Dora’s case is entirely typical, and what is striking about it is the fact that she
has demonstrated the correct causal knowledge (of which variables are causal) that would
enable her to perform correctly on the MVP task. Yet she does not do so. Her problem
is not isolation of variables and identification of causal effects, it appears, but the quite
different problem of coordination of the multiple effects she has identified. Constraining this
coordination effort, it is proposed here, is an inadequate model of multivariable causality,
one in which the principles of consistency and additivity do not apply.

A final question is the relation between the two characteristics, inconsistency and under-
attribution. To investigate this question, the 19 successful students were grouped according
to degree of inconsistency shown over the last three sessions (as in Table 2) and the re-
sulting attribution frequencies were examined by group. As Table 3 shows, those students
having lower inconsistency scores come closer to correctly attributing causality to all three
causal variables (a score of 3.0). The pattern is similar when one examines attributions as a
function of consistency for only the three causal variables for which causality should have
been attributed. This association between the two characteristics, inconsistency and under-
attribution, supports the interpretation that they are joint manifestations of an immature
understanding of multivariable causality.

TABLE 3
Mean Number of Variables Implicated As Causal (Over Three Final MVP
Sessions As a Function of Degree of Consistency of Causal Attributions

Mean Number of Variables for Which Mean Number of Variables Implicated
Inconsistency Appears (of a Possible 5) as Causal (of a Possible 3) N

<0.50 2.70 3
0.51 < 1.99 2.25 4
2.00 < 2.99 1.86 8
>3.00 1.80 4
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DISCUSSION

The research on multivariable causal inference cited at the outset of this article over-
whelmingly emphasizes impressive reasoning competence exhibited by both children and
adults. The present results, based on the performance of fourth graders, indicate the
need for qualification, as do results for adults reported elsewhere (Kuhn, 2007; Kuhn
& Dean, 2004). A mental model of multivariable causality that conforms to a normative,
scientific standard cannot be taken for granted as underlying children’s (or adults’) causal
reasoning. Nor is mastery of the scientific method of controlled comparison and isolation
of individual causal effects a sufficient condition to insure such a model. It appears to be a
cognitive achievement of its own and therefore deserving of attention in its own right.

The term “mental model” traditionally has been used to characterize an individual’s
conception of some particular objects or events. But it may be useful as well to characterize
more generic conceptions, such as mental models of causality, that extend across different
phenomena. Acquisition of a sound mental model of multivariable causality is of at least as
great practical import as is the cognitive skill that has been investigated so extensively under
the heading of COV. Relatively few people have the opportunity or inclination to design
experiments, whereas natural-experiment observations are commonly available (Kuhn &
Brannock, 1977). And people make causal attributions all of the time. Doing so entails
coordination of theoretical expectations and new information (Keil, 1998; Kuhn, 1989).
Limiting oneself to a single explanatory variable constrains explanation. Doing so has been
studied under the heading of “discounting” in the social psychology literature, with the
implication that other potentially explanatory variables have been considered and rejected,
and discounting has been noted to appear in children by age 8 or 9 (Sedlak & Kurtz, 1981).
For many individuals at least, it may be more accurate to characterize the inference process
as based on a model in which single factors most often suffice to explain outcomes and
need not remain consistent across instances.

Once the consistency rule is abandoned, the resulting freedom allows the illusion of
drawing on new evidence, but it is done selectively in a way that protects one’s theories
without ever subjecting them to serious test. If a new piece of evidence threatens one theory,
its implications can be avoided simply by shifting the explanatory burden to another variable
(Kuhn et al., 1995). Allowed free reign, this mental model of causality leads to the fallacies
in attribution that are all too familiar in everyday thinking: Superior skill accounted for our
team’s victory, but the other team’s win was due to luck.

How do we explain the failure of students in the present study to utilize the knowledge
they gained in the first (investigation and inference) task in performing the second (pre-
diction) task? Failure of cognitive skills to transfer to new contexts is a well-documented
phenomenon (Detterman & Sternberg, 1993), and in this sense the present findings perhaps
need no particular explanation. Yet, we know that children younger than the age of those
in this study can under certain conditions appropriately integrate information from at least
two sources in an additive fashion (Anderson, 1991; Dixon & Tuccillo, 2001; Wilkening,
1982), so their failure to do so in the present causal context cannot readily be attributed to
processing limitations. In the present case, over the course of repeated occasions that pro-
vided familiarity with the task format, they needed to integrate the effects of three variables,
whose individual effects they had already ascertained and by this point well understood. If
the problem were one of processing overload, they might have simply ignored one of the
variables and focused on integrating the other two. The results, however, do not support
such a model.

Another possible interpretation is one of task interference. Perhaps the first task biased
children to think in terms of the effects of individual variables in isolation and this interfered
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with their ability to consider multiple effects in the second task. There is little evidence to
support this interpretation, however. The two task formats were similar (compare Figures
3 and 5) in presenting all five variables for consideration and asking for judgments with
respect to all of them. Difference between the two lies rather in the task itself: in the first case
asking the respondent to identify the effect of each variable and in the second to integrate
these individual effects (and indicate the basis for doing so). The first task is clearly a
prerequisite for performing the second. Rather than the first task’s ever being conceived
of as interfering with the second, typically all research attention has been focused on the
first task while the second has been considered a nonissue. In other words, it has simply
been assumed that once an individual was able to isolate and identify the role of individual
variables, making outcome predictions based on this knowledge would be no problem.
This is an important assumption, given the ubiquitous occasions people have to make such
predictions in a multivariable world—an assumption that the present results indicate is not
warranted.

If skill in the MVP task does not emerge unaided, we are left with the question of
what is necessary to master it. The MVP task poses two challenges, corresponding to
the two assumptions of the ANOVA model underlying multivariable causality. First, all
variables that affect the outcome must be taken into account, rather than only those
that happen to be the momentary focus of attention. This skill, as suggested above, at
least for the three-variable case examined here is more likely to rest on disposition than
competence. As such it is likely to be influenced by the increasing metalevel mental
self-monitoring that is characteristic during the second decade of life (Klaczynski, 2004;
Kuhn, 2005; Kuhn & Franklin, 2006) and that supports the consideration of multiple al-
ternatives. Attention to alternatives is critical in scientific reasoning (in recognizing that
uncontrolled alternative variables may affect outcome), as well as in recognizing coun-
terexamples in conditional reasoning (Klaczynski, 2004; Markovits & Barrouillet, 2002),
both forms of reasoning that show improvement in early adolescence (Kuhn & Franklin,
2006).

The second challenge posed by the MVP task, however, corresponding to the other
ANOVA assumption, is more difficult to accomplish, and that is a revision of one’s model
of multivariable causality to incorporate consistency across occasions as a constraint.
If students are operating under a model in which no (or inadequate) constraints exist
requiring that causal variables have to operate consistently across different occasions,
the factors that would lead them to impose such constraints are not obvious, and, as
has been suggested here, even many adults may not have incorporated this constraint in
their causal reasoning. Keselman (2003) found that longer term practice (in predicting
outcomes based on multiple causal variables) was as effective as the direct instruction she
undertook, but the gains she observed among young adolescents were only small ones. In
current work, we are examining collaborative practice, where partners must justify their
predictions to one another, given its success in developing investigative and inference
skills, as well as feedback (from predictions), which may serve both cognitive and affective
functions.

For now, the point to be made is that this educational objective is one essential to
address in designing curricula that seek to promote the development of students’ scientific
thinking skills. The skills of COV and MVP, as they are assessed in the tasks employed in
the present work, are of course only greatly simplified pieces of a complex network that
represents scientific thinking. Yet the present work suggests that each of these pieces must be
identified and examined if we are eventually to gain better understanding of the interrelated
whole.
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